Trabajo Práctico N°6: ESPACIOS VECTORIALES CON PRODUCTO INTERIOR

Ejercicio 1:

Para cada espacio vectorial indicado, analice cuáles de las siguientes expresiones define un producto interior. Para ello, compruebe que se cumplen los axiomas correspondientes en los casos afirmativos y muestre qué axiomas no se cumplen en los casos negativos.

- a) $V = IR^3$, $\langle u, v \rangle$ es el producto interior euclidiano en IR^3 , $u, v \in IR^3$.
- b) $V = IR^2$, $\langle u, v \rangle = u_1 v_1 3 u_2 v_2$, $u = (u_1, u_2) \in IR^2$ $y = (v_1, v_2) \in IR^2$.
- c) $V = IR^3$, $\langle u, v \rangle = u_1v_1 + 2u_2v_2 + 6u_3v_3$, $u = (u_1, u_2, u_3) \in IR^3$ y $v = (v_1, v_2, v_3) \in IR^3$.
- d) $V = \{A \in M_{2\times 2} / A \text{ es una matriz diagonal con componentes reales}\},$ $\langle A, B \rangle = a_{11}b_{11} - a_{22}b_{22}, A, B \in V.$

e)
$$V = IR^2$$
, $\langle u, v \rangle = u^T A v$, $u = (u_1, u_2) \in IR^2$, $v = (v_1, v_2) \in IR^2$ $y A = \begin{bmatrix} 1 & -1 \\ -1 & 4 \end{bmatrix}$.

Ejercicio 2:

Complete la siguiente tabla considerando el producto interior definido en cada espacio vectorial indicado.

	$V = IR^2$,	$V = IR^3$,	$V = M_{2x2}$
	$\langle u, v \rangle = 3 u_1 v_1 + u_2 v_2$	$\langle u,v \rangle$ producto escalar ,	$\langle A,B\rangle = a_{11}b_{11} + a_{12}b_{12}$
	u = (2, -1), v = (-3, 2)	u = (1, 0, 2), v = (-2, 3, 1)	$+a_{21}b_{21}+a_{22}b_{22}$,
			$u = A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, v = B = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$
$\langle u,v \rangle$			
u			
d(u,v)			
Áng(u,v)			

Ejercicio 3:

Sean u y v vectores cualesquiera de un espacio vectorial V con producto interior. Demuestre que:

a)
$$\|u+v\|^2 + \|u-v\|^2 = 2\|u\|^2 + 2\|v\|^2$$

b)
$$\langle 0, v \rangle = \langle v, 0 \rangle = 0 \in IR$$

Ejercicio 4:

Sean los vectores u = (2, -1) y v = (1, 3) con el producto interior de IR^2 definido por $\langle u, v \rangle = u_1 v_1 + 2 u_2 v_2$.

- a) Verifique la desigualdad de Cauchy-Schwarz y la triangular para dichos vectores.
- b) Determine el valor de w_1 de modo que el vector $w = (w_1, 4)$ sea ortogonal a u.
- c) Halle un vector unitario en la dirección de v.

Ejercicio 5:

Considere el espacio vectorial IR^3 con el producto interior euclidiano. Determine, de ser posible, los valores de k de modo que los siguientes conjuntos resulten conjuntos de vectores ortogonales.

a)
$$\{(1,2,-1);(3,1,k)\}$$

b)
$$\{(1, k, 2k); (0, k, -1)\}$$

Ejercicio 6:

Complete la siguiente tabla según corresponda. Considere en cada espacio vectorial indicado el producto interior euclidiano.

V	Conjunto	Norma -lizado	Orto- gonal	Orto- normal	Base de V	Base ortonor-mal de V
IR ²	{(5,3);(,)}				X	
IR ²	$\{(,);(0,\sqrt{2})\}$		X		X	
IR ³	{(0,0,-1); (1,0,0)}					

IR ³	$\{(-1/\sqrt{5}, 2/\sqrt{5}, 0); (2/\sqrt{5}, 1/\sqrt{5}, 0); (,)\}$	X	X	X	X	X
IR ⁴			X			

Ejercicio 7:

Sean u, v y w vectores de IR^n tales que u y v son vectores ortogonales, ||u|| = 3; ||v|| = 7; ||w|| = 1; $\langle v, w \rangle = 4$; $\langle u, w \rangle = 6$. Utilice dicha información para evaluar las siguientes expresiones.

a)
$$||u+v||$$

b)
$$\|u-3v\|^2$$

c)
$$\langle v-3w, 2u+w \rangle$$

d)
$$\langle u+v-w, 3u+4v \rangle$$

Ejercicio 8:

Para cada uno de los siguientes ítems, considere en cada espacio vectorial el producto interior euclidiano y determine el ángulo entre:

- a) un vector v de IR^n y su opuesto;
- b) los planos de IR³:

$$\pi_1 \equiv 3x - y + 2z = 0$$

$$\pi_2 \equiv 2x - 3y - z = 0;$$

c) las rectas de IR³:

$$r_1 \equiv \overline{OP} = (2, -1, 3) + \lambda(3, -3, 0), \ \lambda \in IR$$

$$r_1 \equiv \overline{OQ} = (1, 2, 5) + \lambda (2, -1, 2), \ \lambda \in IR$$

Ejercicio 9:

Determine el valor de verdad de las siguientes proposiciones. Demuestre las verdaderas y proporcione contraejemplos para las falsas.

a) Si u y v son vectores ortogonales en un espacio vectorial con producto interior, V, tales que II u II = II v II = 1, entonces $\{u, v\}$ es una base ortonormal de V.

3

- b) Los vectores u = (1, -3, 1) y v = (0, -1, -3) con el producto interior de IR^3 definido por $\langle u, v \rangle = 5u_1v_1 + u_2v_2 + u_3v_3$ son ortogonales.
- c) El conjunto formado por los vectores u y v del ítem (b) es una base de IR^2 .
- d) Si u es un vector de un espacio vectorial con producto interior V y $k \in IR$ entonces ||k u|| = |k|| ||u||.
- e) Toda base de IR^n es un conjunto ortogonal de vectores de IR^n .
- f) Sean u, v y w vectores de un espacio vectorial con producto interior V, si w es ortogonal al vector u y al vector v, entonces w es ortogonal a toda combinación lineal de u y v.

Ejercicio 10 (OPCIONAL): Un producto interior asociado con el Cálculo

- a) Sean f y g dos funciones continuas en el intervalo [a,b]. Demuestre que la siguiente expresión $\langle f,g\rangle = \int_a^b f(x)g(x)dx$ define un producto interior sobre el espacio de todas las funciones continuas definidas en [a,b].
- b) Utilice el producto interior definido en el ítem (a) para calcular $\langle f, g \rangle$ para la función f dada por $f(x) = cos(2\pi x)$ y para la función g dada por $g(x) = sen(2\pi x)$, con $x \in [0, 1]$.
- c) Calcule ||g|| para $g(x) = sen(2\pi x)$, con $x \in [0, 1]$.

Solución

a) Sean f, g y h funciones continuas en el intervalo [a, b]. Sea $k \in IR$.

1.
$$\langle f, g \rangle = \int_a^b f(x)g(x)dx = \int_a^b g(x)f(x)dx = \langle g, f \rangle$$

2.
$$\langle f+g,h\rangle = \int_a^b (f(x)g(x))h(x)dx = \int_a^b f(x)h(x)dx + \int_a^b g(x)h(x)dx = \langle f,h\rangle + \langle g,h\rangle$$

3.
$$\langle k f, g \rangle = \int_a^b k f(x)g(x)dx = k \int_a^b g(x)f(x)dx = k \langle g, f \rangle$$

4.
$$\langle f, f \rangle = \int_a^b f(x) f(x) dx = \int_a^b f^2(x) dx \ge 0$$
 por ser $f^2(x) \ge 0$ para todo $x \in [a, b]$.
Además, por ser f continua y $f^2(x) \ge 0$ en $[a, b]$, $\int_a^b f^2(x) dx = 0$ si y sólo si $f(x) = 0$ para todo $x \in [a, b]$. Por lo tanto, se tiene que $\langle f, f \rangle = 0$ si y sólo si $f \equiv 0$.

Luego, $\langle f, g \rangle$ es un producto interior.

b)
$$\langle f,g\rangle = \int_0^1 \cos(2\pi x) \sin(2\pi x) dx = \frac{1}{2\pi} \frac{\sin^2(2\pi x)}{2} \bigg]_0^1 = 0 \Rightarrow \langle f,g\rangle = 0$$

c)
$$\|f\|^2 = \langle f, f \rangle = \int_0^1 \cos(2\pi x) \cos(2\pi x) dx = \int_0^1 \cos^2(2\pi x) dx = \int_0^1 \frac{1 + \cos(4\pi x)}{2} dx =$$

$$= \frac{1}{2} x \Big|_0^1 + \frac{1}{2} \frac{\sin(4\pi x)}{4\pi} \Big|_0^1 = \frac{1}{2} + 0 \implies \|f\| = \frac{\sqrt{2}}{2}$$

Ejercicio 11 (OPCIONAL): Proyección ortogonal

Si P es un punto en el espacio tridimensional ordinario y W es un plano que pasa por el origen, entonces el punto Q en W más próximo a P se obtiene al trazar una perpendicular de P a W. El vector w_1 (Figura 1) se denomina proyección ortogonal de u sobre W y se denota $proy_W u$ y el vector w_2 ($w_2 = u - proy_W u$) se denomina componente de u ortogonal a W. Si el conjunto $\{v_1, v_2, ..., v_r\}$ es una base ortonormal de W, entonces:

$$proy_W u = \langle u, v_1 \rangle v_1 + \langle u, v_2 \rangle v_2 + ... \langle u, v_r \rangle v_r$$

Si $u = \overline{OP}$, la distancia entre P y W está dada por II $u - proy_W u II$.

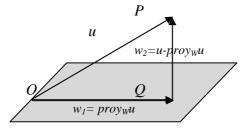


Figura 1

Sea W el plano en IR^3 de ecuación x- 2y - z = 0:

- a) Halle una base ortonormal para W.
- b) Determine el vector v de W más próximo al vector $u = (-1, 1, 0) \in V$.
- c) Obtenga la distancia de u a W.

Solución

a) Si $w \in W$ entonces w = (2y+z, y, z) = y(2, 1, 0) + z(1, 0, 1) con $y, z \in IR$, luego una base para W es:

$$B = \{(2, 1, 0), (1, 0, 1)\} = \{u_1, u_2\},\$$

se debe hallar entonces una base ortonormal para W, digamos $B' = \{v_1', v_2'\}$.

Aplicando el proceso de Gram-Shmidt tendremos una base ortogonal $\{v_1, v_2\}$:

$$v_1 = u_1 = (2, 1, 0)$$

 $v_2 = u_2 - \frac{\langle u_2, v_1 \rangle}{\|v_1\|^2} v_1 = (1, 0, 1) - \frac{2}{5} (2, 1, 0) = (1/5, -2/5, 1)$

Sólo falta normalizar los vectores:

$$v_1' = \frac{v_1}{\|v_1\|} = (2\sqrt{5}/5, \sqrt{5}/5, 0)$$

$$v_2' = \frac{v_2}{\|v_2\|} = (\sqrt{30}/30, -2\sqrt{30}/30, \sqrt{30}/6)$$

Luego una base ortonormal para W es:

$$B' = \left\{ \left(2\sqrt{5}/5, \sqrt{5}/5, 0 \right); \left(\sqrt{30}/30, -2\sqrt{30}/30, \sqrt{30}/6 \right) \right\}$$

b) El vector v de W más próximo al vector $u = (-1, 1, 0) \in V$ es $proy_w u$, donde $proy_w u = \langle u, v_1 \rangle v_1 + \langle u, v_2 \rangle v_2$, siendo $\{v_1, v_2\}$ una base ortonormal de W.

$$\begin{split} & proy_W u = \langle u, v_1 \rangle v_1 + \langle u, v_2 \rangle v_2 \\ &= \left\langle (-1, 1, 0), \left(\frac{2\sqrt{5}}{5}, \frac{\sqrt{5}}{5}, 0 \right) \right\rangle \left(\frac{2\sqrt{5}}{5}, \frac{\sqrt{5}}{5}, 0 \right) + \\ &+ \left\langle (-1, 1, 0), \left(\frac{\sqrt{30}}{30}, \frac{-2\sqrt{30}}{30}, \frac{\sqrt{30}}{6} \right) \right\rangle \left(\frac{\sqrt{30}}{30}, \frac{-2\sqrt{30}}{30}, \frac{\sqrt{30}}{6} \right) = \\ &= -\frac{\sqrt{5}}{5} \left(\frac{2\sqrt{5}}{5}, \frac{\sqrt{5}}{5}, 0 \right) - 3\frac{\sqrt{30}}{30} \left(\frac{\sqrt{30}}{30}, \frac{-2\sqrt{30}}{30}, \frac{\sqrt{30}}{6} \right) = \\ &= \left(-\frac{2}{5}, -\frac{1}{5}, 0 \right) - \left(\frac{3}{30}, \frac{-6}{30}, \frac{3}{6} \right) = \left(-\frac{1}{2}, 0, -\frac{1}{2} \right) \end{split}$$

Entonces,

prov
$$u = (-1/2, 0, -1/2)$$

c) La distancia de u a W, d(u, W), está dada por $||u - proy_W u||$.

$$||u - proy_{W}u|| = ||(-1,1,0) - (-1/2, 0, -1/2)|| =$$

$$= ||(-1/2, 1, 1/2)|| = (1/2)\sqrt{6} \qquad \Rightarrow \qquad d(u,W) = (1/2)\sqrt{6}$$